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ABSTRACT

A numerical method for evaluating the inverted Abel integral

employing cubic spline approximations is described along with a

modification of the procedure of Cremers and Birkebak, and an extension

of the Barr method. The accuracy of the computations is evaluated

at several noise levels and with varying resolution of the input data.

The cubic spline method is found to be useful only at very low noise

levels, but capable of providing good results with small data sets.

The Barr method is computationally the simplest, and is adequate when

large data sets are available. For noisy data, the method of Cremers

and Birkebak gave the best results.



BRIEF

Three methods for evaluating the inverted Abel integral

are presented and their sensitivity to noise in the input data and

resolution of the input data are evaluated.



Introduction

When spectroscopic observations are made of a flame or plasma,

the quantity observed generally represents an integration of the con-

tributions to the signal by species distributed across the source in

the line of observation. Detailed knowledge of the conditions at any

region within the source requires the application of special tech-

niques. Two line atomic fluorescence may be used to obtain local

temperatures within flames (1, 2). The droplet injection technique

developed by Heiftje and Malmstadt (3) has been shown to be useful

for making spatially resolved temperature measurements (4). Two photon

excitation by pulsed lasers has been proposed by Measures as an instru-

mental technique for obtaining spatial resolution (5). These tech-

niques require special instrumentation and are generally applicable

only to the study of temperature profiles or distributions of species

possessing good atomic fluorescence characteristics. The droplet

injection technique may be more general, but may not reflect the con-

ditions obtained with nebulizer systems.

Mathematical techniques may be used to extract information about

the interior from conventional side on measurements. When applied to

sources of irregular shape, mathematical techniques require that measure-

ments be made from more than one direction relative to the orientation

of the source (6, 7, 8). If the source possesses a simple and regular

geometry, one set of measurements will suffice. This is a common case in

analytical spectroscopy, where the source often possesses circular symmetry,

and may be treated by the inverted Abel integral (9, 10, 11, 12, 13, 14).
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This integral may be written as:

i(r) = - ± r 2 /2 dx

where i(r) is the value of the variable sought as a function of the

radius, r; I (x) is the value of the observed variable as a function

of the distance between the optical axis and the source axis, x; and

R is the outer radius of the source. See Figure 1.

When the inverted Abel integral is used to determine radial

emission profiles, it is necessary to account for self absorption if the

flame or plasma is not optically thin (15, 16, 17).

In this laboratory, we have been interested in the application of

the inverted Abel integral to a variety of sources, including inductively

coupled plasmas, stable analytical flames, and transient flames produced

by pyrotechnic flares.

Because the transformation of a laterally observed profile into

a radial profile tends to accentuate any uncertainty in the observations,

it is important to evaluate the noise sensitivity of any technique used

to perform the transformation. An extensive analysis of error propa-

gation in Porter's method has been published (18), but many of the other

methods have not been subjected to such scrutiny.

In this communication, we present the results of studies into the

error propagation of three methods for evaluating equation (1). The

methods investigated were a modification of the technique of Cremers

and Birkebak (13), an extension of the method of Barr (12), and a new

method, based upon Cubic Spline functions, which was developed by the

authors. The methods are compared with regard to their accuracy
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under varied conditions of data resolution and noise level, and recommenda-

tions are developed for which method is most suitable for a given quality

of data.

Description of the Methods

Application of the inverted Abel integral to spectroscopic data

requires the construction of a suitable function, I(x), giving the

observed quantity in terms of the distance between the source axis and

optical axis. A suitable function will possess the following properties:

its derivative will be integrable in (1), its first derivative will have

a value of zero at the source axis (i.e., I'(O) = 0), and it will reject

noise in the observed data. The requirement that I'(O) = 0 is dictated

by the assumption of circular symmetry, and a failure to adhere to this

constraint will generally cause a large error in the computed value of

i(O). If the function follows noise in the input data, the resulting

large values of II"(x)l will cause significant errors.

Several workers have used polynomial approximations to the unknown

function, I(x) (11, 12, 13). Such functions are easily generated from the

observed data, and their derivatives yield an integratable representation

of Equation (1).

To allow treatment of a variety of curve shapes, the data are

generally broken into several segments, each covering a portion of

the range of x, and a separate polynomial is generated for each

segment. These polynomials are spliced together to obtain I(x). For

the jth segment, the polynomial representation of I(x) may be written:

Ij(x) = AOj +A A 2jx2 + A3 x + ... (2)
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with the corresponding derivative

Ij (x) = Alj + 2A 2xx ++ . (3)

For an approxiamtion of this form, i(r) is obtained by a summa-

tion of Equation (1) over the appropriate segments. The following

equation may be used for polynomials of fourth or lower order:

R + s

i (r) Alij  n j + Sj + 2A2j (Sj+1  Sj) +

r ~ LR+Sj - RjS.+r 2  nR j+I1 +Sj ~ l
1  +

4A4  S j+l + r 2 (Sj. 1 - Sj) (4)

where R. is the inner radius of the jth data segment, or r, which-

ever is greater; and S. (R j - r

Development of the Spline Method

Cubic Spline functions consist of a series of third order poly-

nomials, each one covering an interval between two points. These poly-

nomials are determined so that the composite function produced by

joining them end-to-end has the following properties: the function

passes through all of the points, and is therefore continuous; the

first derivative is continuous; and the rate of change of the slope is

minimized, that is:

ff"(x) 2dx (5)

is minimized over the range of x.

Cubic Splines have been used for interpolating data (18,19,20 );

however, their properties of having a simple, continuous first deriva-

tive and a minimized rate of change of slope make them attractive as
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approximations of I(x). Reinsch (21) has addressed the problem of

fitting Cubic Splines to noisy data by introducing a smoothing parameter,

S, and allowing the function to pass outside of the data points, subject

to the condition

N(Yi f(xi ))(y. < s (6)
i=l (dyi)

2

Here yi is the input value, f(xi) is the value computed from

the spline function, and dyi is the weight of the ith point. N

is the number of data points. Reinsch suggests using the standard

deviations of the data points as the weights, dyi, and values of S in

the range

N - v/21T< S < N + VZN

Smoothing values well in excess of the recommended range have

been explored, and, while good results were sometimes obtained,

performance tended to be erratic when smoothing values larger than

those recommended were used.

The spline method is implemented by first normalizing the x

values to an outer radius of 1.0. Reinsch's algorithm is then applied

to generate a smoothed Cubic Spline function having N-1 segments. A

transformation of the function is performed to give it coordinates

compatible with Equation (4). Values of i(r) are computed by evaluating

the first three terms of Equation (4) over each segment from r to R.

Details of the transformation are given below.

Reinsch's algorithm produces the Cubic Spline in terms of offsets,

h., so that each segment starts at zero:

f.(x - h.) = A + Al - hj + Aj - h) 2 + A., - hi 3 (7)
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where h. is the value of x at the inner end of the jth segment.

To simplify the application of Equation (4), the spline equations

are converted into functions of x as follows:

A*0j * A j A ljh j + A2jhj
2 + A3jh 3  (8)

A*I : Aj - 2A2jhj + 3A3jhj
2  (9)

A*2j 2j- 3A3jhj  (10)

A*3j A 3j (11)

This yields functions of the form:

f*.(x) + A*Oj + A*ljX + A*2jx 2 + A*3jx (12)

where the hj's have been removed.

One further modification is necessary, since the condition

I'(0) = 0 is not met by the Cubic Spline function. The innermost

segment's coefficients are recomputed so that I'(O) = 0 while the

original values at the ends of the segments are preserved, along

with the continuity of the first derivative. This is accomplished by

Equations (13-16):

0= A*0 0  (13)

A10= 0 (14)

# 3(A* 11h + A* - A*Oo)(N-I)
20 3 0" A*11 (N'I) + A31  (15)

A 30 =(A01 - A*00  *3 0 (N-l) (16)

These yield the inner segment equation:

f0#(x) = A#O0 + A#20x
2 + A# 30x (17)
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Note that the value A01 in Equation (16) is the coefficient from

Equation (7), while all other A's in the right hand sides of Equations

(13-16) are from Equation (12).

The transformed polynomials f0o(x) and f*l(x) through f*Nl(x)

are used in Equation (4) to compute the values of i(r).

It was found that this method produced large errors in the values

of i(0) due to a sharp change in curvature in the inner segment of the

spline function. The following modification was found to reduce the

error, and was incorporated into the method: The point next to the
1 -l

center, i.e. at r = N-T , is reflected across the center to r = N-T.

The spline curve is then fitted to the N~l points from r= toNTto

r = 1.0. The segment of this spline function covering r = ll toN -1

r = 0.0 is discarded, and the procedure is continued beginning at

Equation (8). The inclusion of this extra point appears to steady the

function near r = 0. Reflection of 2 or 3 points was also tried, but

showed no benefit relative to reflecting 1 point.

A further attempt at reducing the error in i(O) was made by

reducing the statistical weight, dy, of the points at r = N-- r =

and r =-. This technique did not improve the results, and was not

incorporated into the method.

The Cubic Spline method, with one reflected point and equal weight

on all points, will be referred to as SPLINE.

Extension of the Barr Method

Barr (12) developed a method of performing the Abel inversion

which, while using a multisegmented polynomial approximation to I(x),

differs from other methods in that the integration is performed before
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the differentiation. This reversal of the order of operations is

claimed to reduce the sensitivity to noise in the input data. In

addition, this method greatly reduces the amount of computation

required through the use of a table of coefficients from which a sum

of products is used to compute i(r):

k = (N-l)r

1 N

(N-1 )Tr k-2 Skn n$ for k > 2

i(r) 1 1 k .n for k < 2 (8( N- 1') n:O ak n (18 ) '

Note that i(r) may be obtained only for values of r which yield inte-

gral values of (N-l)r, and that the function I(x) need not be generated,

since only the observed values, 10 through I n , are needed.

The table of coefficients is given in Ref. (12) for N = 21. Smaller

data sets are handled by the assumption that I(x) = 0 for x > 1.0.

In order to perform a complete comparison of this method to the

others studied, it was necessary to extend the table of coefficients

beyond N = 21. The table has been extended to cover N < 51 by the use

of the equations presented in the appendix.

Modification of the Cremers and Birkebak Method

A method involving multisegmented polynomials in which the segments

are overlapped to provide smoothing was developed by Cremers and Birkebak

(13). The method has been implemented in this laboratory with two changes:

In order to comply with the restriction that I'(0) = 0, Cremers

and Brikebak changed the form of the approximation of I(x) from Equation

(2) to a fit in x2 for the innermost segment:
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1o{x} = A00 + A10x
2 + A20x 4 + A30x 6 + A40x8  (19)

To avoid changing the form of Equation (4) to allow for the high

orders involved in (19), we have used Equation (2) throughout, subject

to the limitation that A1 = 0 in the innermost segment. This change

from the original method might also be expected to improve the results

by reducing the ability of the inner segment to reproduce noise.

The amount of overlap between adjacent segments utilized in fitting

the approximations to I(x), fixed at three points in Cremers and Birkebak's

work, was made variable in our modification, and is expressed in percent.

Thus, a 50 % overlap specifies that one half of the points from the

adjacent segments are to be used when fitting I(x). This modification

permits some variation in the amount of smoothing performed.

It was found that double precision (64 bit) math was necessary in

the least squares curve fitting computation when 51 point data sets

were used.

This modification of the method of Cremers and Birkebak will be

referred to as C & B 3 when third order approximations to I(x) are

used, and as C & B 4 when fourth order fits are employed. Except for

a limited set of experiments intended for direct comparison to Ref. (9),

all work with this method involved a 50 overlap.
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Procedures

Three functions describing different shapes of i(r) vs. r were

used to generate test data:

i(r) = 1 - 3r2 + 2r3, (20)

the bell-shaped curve from Ref. (13),

i(r) = 0.75 + 32r 3 over the range 0 r 0.25 and

i(r) = 16/27(1 + 6r - 15r 2 + 8r3) over the range

0.25 r 1.0, (21)

the off axis distribution from Ref. (13), and

i(r) = 0.79788e "8r , (22)

a Gaussian curve with = 0 and a = 4.

"True" inverted data were prepared for comparison with the various

inversion methods by evaluation of these functions. "Exact" input data

for the inversion calculations were prepared by integration of

,R
i(r)r

I(x) = 2 dr (23)

I (r2 " 2)1/2



-11-

using (20), (21) or (22) as i(r). These data were rounded to ± 5 x 10"5 ,

corresponding to a residual peak to peak noise level of approximately

0.02 ', and were assigned weights of 5 x 10 5 for use by SPLINE. Various

amounts of noise were added from a normal distribution by a pseudorandom

number generator. The noise was expressed in percent as a peak to

peak value referred to the largest observation in the exact data. The

standard deviation of noisy data for use by SPLINE was considered to be

1/4 of the peak to peak noise. Data sets having 11, 21, 31, 41 and 51

points each were prepared and noise was added at 0.1, 0.25, 0.5, 1, 2,

5, and 10 %. Several replicate data sets were prepared at all added

noise levels.

To provide a direct comparison with the results of Cremers and

Birkebak, data sets were prepared by rounding the exact values to

± 0.005.

The accuracy of the inversion calculations was evaluated by computing

the standard deviation of the errors between the computed inversion and

the true inversion. This was expressed as a percentage noise in the

inverted data relative to the largest value in the true inversion, again

using the criterion that four standard deviations define the peak to

peak noise. Two factorial design experiments were performed, and the

data were subjected to Analyses of Variance.

All computations were programmed in FORTRAN and performed on a Data

General MIOVA computer.

Results

The modified Cremers and Birkebak method was compared to the

original using the off axis distribution of Equation (21). Both
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exact data and data rounded to ± 0.005 were used, as in Ref. (13). The

results are presented in Table I. The modified method performed much

better than the original with 11 point data sets. Above 11 points, the

original method was better when exact data were used.

The first factorial experiment used all three distributions, 11

through 41 point data sets, and from 1 through 10 percent added noise.

C & B 3 was the best overall, followed by SPLINE and then BARR, with all

differences significant (p< 0.05). The three distributions produced

significantly (p< 0.05) different results, with the normal curve

(Eq. 22) being the easiest to reproduce, followed by the polynomial bell

(Eq. 20) and the more difficult off axis curve (Eq. 21).

Some trends are evident in the data from the first experiment (see

Table II). The most striking is the failure of BARR at 11 points. Plots

of the inverted output from all three curve shapes, of which Figure 2b

is representative, show an overdamped appearance when compared to the

output of the other methods (Figures 2a and c). Both SPLINE and BARR

appear underdamped in the presence of noise when a large number of

points are used, as depicted in Figures 3a and b. At the lower noise

levels (1 to 2 %), BARR with 31 points worked well, as did C & B 3

with 31 or 41 points. At higher noise levels (5 to 10 %), C & B 3 was

clearly superior to both SPLINE and BARR. All three distributions gave

qualitatively similar results.

A second factorial experiment was undertaken to elucidate the behavior

of the methoes at lower noise levels. This experiment used only one

distribution, Equation (21), and covered the 0.1 to 0.5 : noise range.

Statistical analysis grouped SPLINE and C & B 3 together, with BARR

significantly (p < 0.05) worse, due again to the failure of BARR at 11
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points. The results of this experment are shown in Table III. All

data collected on the Equation (21) distribution are summarized in Table

IV and Figures 4 through 8.

These figures show that SPLINE provided the best results when the

input data contained less than 0.25 0 noise, and that C & B 3 was best

with data containing over 0.25 % noise. BARR was very poor with 11 point

data sets, becoming better as the resolution of the data increased. With

small amounts of noise and 41 or 51 data points, BARR approached C & B 3,

but both were less precise than SPLINE. As the noise level increased,

BARR provided results intermediate to the other two methods.

As seen in Figures 4 and 7, C & B 4 was inferior to C & B 3.

Conclusions

The choice among these methods of performing the Abel Inversion

depends upon the situation at hand. If a noise level of over 0.25 is

present in the data, the best results may be expected from the modified

Cremers and Birkebak method, and a large number of data points should be

used. Where precise data are available, the Cubic Spline method should

provide the best results, if a reliable estimate of the standard deviation

of the data is also available. A small set will suffice in this case.

The Barr method may be chosen when simplicity of computation is important,

and a large number of data points are available.
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EXACT DATA ROUNDED DATA

Number This work, This work,b This work, This work,

of Refa 50 % 3 Refa 50 % 3

Degree Points (12) Overlap Points (12) Overlap Points

Third 11 154 1.33 9.05 153 3.87 10.15

21 4.04 1.48 4.41 5.64 3.49 5.62

31 1.84 1.34 1.34 3.89 2.11 2.11

41 1.06 1.24 0.71 4.80 2.47 2.04

51 0.73 0.66 0.54 3.69 2.52 2.05

Fourth 11 83 1.08 4.35 82 6.25 3.10

21 1.38 1.73 2.78 4.08 3.04 2.34

31 0.74 1.64 1.64 4.00 2.05. 2.05

41 0.53 1.53 1.01 3.94 2.98 4.33

51 0.44 1.15 0.87 4.52 2.76 3.56

Table I. Comparison of the Mod-,,ied Cremers and Birkebak method to Cremers and

Birkebak's results for the curve given by Eq. 21. All data are peak to

peak noise as a percent of the largest value in the true inversion.

avalues have been converted to percent noise.

bThree point overlaps were produced by the following overlap percentages:

11 points - 100 %; 21 points - 75 %; 31 points - 50 0, 41 points - 37.5 %

and 51 points - 30 %. Note that the maximum overlap available with 11 point

data sets is only 2 points.



INPUT NOISE, % of Imax

Curve Numberof . a 2a 5a a

Shape Method Points 0.02 1  2  10

11 0.4 2.0 4.5 12.0 13.5
SPLINE 21 0.3 3.3 5.6 8.9 19.231 0.4 3.0 4.9 6.9 16.2

41 0.4 2.8 4.8 24.0 23.4

11 6.4 6.0 6.6 11.4 17.9
Eq. 20 BARR 21 1.3 1.2 3.1 6.8 15.431 0.6 1.9 6.0 6.3 16.2

41 0.4 1.7 6.1 27.1 26.7

11 0.7 2.2 7.5 13.3 17.7
C & B 3 21 0.6 1.6 6.5 4.4 15.431 0.8 1.0 2.9 3.6 12.6

41 0.5 1.5 2.7 4.7 12.1

11 0.7 6.4 5.1 8.8 20.0
SPLINE 21 0.1 2.9 4.1 19.9 22.431 0.1 3.9 6.0 13.4 21.0

41 0.1 4.3 5.6 17.9 27.9

11 25.6 26.8 24.9 21.8 20.4
Eq. 21 BARR 21 5.5 6.0 6.8 9.6 14.231 2.4 2.6 3.7 10.5 22.5

41 1.4 4.2 4.3 17.4 20.4

11 1.4 4.8 3.4 7.3 15.5
C & B 3 21 1.6 2.2 3.0 11.4 10.331 1.6 2.2 6.0 5.1 8.9

41 1.3 2.1 3.0 17.9 15.5

11 0.9 1.9 5.9 8.0 8.9
SPLINE 21 0.7 2.7 2.7 5.8 9.831 0.6 1.6 3.2 8.3 25.3

41 0.7 2.3 3.5 12.3 19.1

11 17.8 18.1 18.6 15.1 20.4
Eq. 22 BARR 21 2.8 2.8 2.3 4.8 11.831 1.0 1.2 2.1 8.5 19.4

41 0.6 2.1 4.7 5.6 13.7

11 2.8 2.8 2.7 6.5 12.9
C & 8 3 21 2.2 2.5 3.0 8.1 7.931 2.1 2.2 2.6 3.7 6.6

41 2.0 2.4 1.9 4.7 7.6

Table II. Noise in the computed inversion for levels of noise in the input
data of up to 10%
Each value is the mean of 2 replicates.



INPUT NOISE, %

Number

of

Method Points 0 0. 0.25a 0.5

SPLINE 11 0.66 0.89 1.52 2.59

41 0.13 0.55 1.43 1.50

BARR 11 25.6 25.6 25.6 25.6

41 1.37 1.36 1.54 2.14

C & B 3 11 1.40 1.42 1.57 2.09

41 1.25 1.25 1.20 1.35

Table III. Percent noise in the computed inversion for three methods

with input noise of up to 0.5 %. All data are for the off

axis distribution of Eq. 21.

aEach value is the mean of 5 replicates.



INPUT NOISE, %

Number

of
Method Points 0 0.1 0.25 0.5 1 2 5 I0

11 0.66 0.89 1.52 2.59 6.4 5.1 8.8 20.0

21 0.10 0.49 1.10 1.86 2.9 4.1 19.9 22.4

SPLINE 31 0.14 0.79 1.17 1 .92 3.9 6.0 13.4 21.0

41 0.13 0.55 1.43 1.50 4.3 5.6 17.9 27.9

51 0.14 0.58 1.75 2.87 5.4 5.3 17.2 24.0

11 25.57 25.60 25.61 25.64 26.8 24.9 21.8 20.4

21 5.53 5.46 5.56 5.66 6.0 6.8 9.6 14.2
BARR 31 2.40 2.33 2.53 2.77 2.6 3.7 10.5 22.5

41 1.37 1.36 1.54 2.14 4.2 4.3 17.4 20.4

51 0.88 0.93 1.46 1 .94 5.3 4.1 18.5 21.8

11 1.40 1.42 1.57 2.09 4.8 3.4 7.3 15.5

21 1.56 1.45 1.62 1.78 2.2 3.0 11.4 1 10.3

C & B 3 31 1.58 1.37 1.46 1.57 2.2 6.0 5.1 i 8.9

41 1.25 1.25 1.20 1.35 2.1 3.0 17.9 15.5

51 0.90 0.89 0.94 1.05 2.2 2.3 5.5 1 12.0

11 1.46 1.70 1.95 2.76 5.1 4.9 18.3 36.8C&B4

41 J2.82 2.88 3.04 2.87 3.4 4.3 13.8 22.2

Table IV. Summary of data collected for the distribution given by Eq. 21.
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Figure 1. Top view of the experiment, showing the relationship
of x, r, and R.
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Anpendix - Computation of

The table of coefficients, 3
kiused in the Barr method may be

computed for a system having N + 1 points by the following algorithm (22).

The table is general, and may be used for any smaller data set.

Copies of the table for N=51 are available from the authors.

For k: = ,step 1 until X

do begin

43k6 -704k 
4 +3522

= 443k + 352k~+ 37,6

C 0 = (-448k0 1088k 4 + 96k 3 +819.2k 2 + 426.4k - 2.4)/Kk

C I = (-224k5 + 544k- 1920k - 1.8k2  158.8k + 58.4)/Kk

C 2 = C1088k 4- 1212.8k 2 -2/

c= (224k 5 44k 4+ 1920k 3 212.8k~ + 158.8k+384/k

C 4 = (448k - 1088k 4- 96k 3+ 819.2k 2 426.4k 2.)/-

For n- = 0, step .1 until N

do begin

IF k < 2 or n - k a

1=0

ELSE IF n -k > -2

n-k+2

k~n ' ak-.2+iln
1=0

end

end
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